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B Users’ interactions with items are
driven by various intents:
« E.g.: Preparing for holiday gifts,
shopping for fishing equipment,
etc.

B However, users’ underlying intents are ofte
unobserved/latent.

B To investigate the benefits of latent Figure 1: Users’ purchasing behaviors can be driven by un-
intents and leverage them effectively for derlying intents that are not observed.
recommendation.
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Figure 2: Overview of ICL. (a) An individual sequence level SSL for SR. (b) The proposed ICL for SR. It alternately performs in-
tent representation learning and intent contrastive SSL with FNM within the generalized EM framework to maximizes mutual

information (MIM) between a behavior sequence and its corresponding intent prototype.
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0" = arg max Z Z In Py(sy). (1)
0  u=1t=2

which is equivalent to minimizing the adapted binary] cross-

entropy loss as follows:

N T
LNextltem = Z Z LNextitem (U, 1), (2)
u=1 t=2
Lextitem(t: ) = —log(a(hl_ - s)) = " log(1 - o(hlf_; - sk,)).
neg
(3)

where s} and s;,, denote the embeddings of the target item s;
and all items not interacted by u. The sum operator in Eq. 3 is
computationally expensive because |V| is large. Thus we follow [3,
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Figure 2: Overview of ICL. (a) An individual sequence level SSL for SR. (b) The proposed ICL for SR. It alternately performs in-

tent representation learning and intent contrastive SSL with FNM within the generalized EM framework to maximizes mutual
information (MIM) between a behavior sequence and its corresponding intent prototype.

Contrastive SSL in SR
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Contrastive SSL in SR

cU . UsoUN QU _ Ul u u
Sl = gl (S ), S —_— gz (S ), S.t. gl ,gz Lo g, (4) (a) (b)
E-step: Intent Representation Learning M-step: Intent Contrastive SSL with FNM
u u . . e - : .
where g} fmd g, are transformation functions samplt?d from G to ' cewon-{, |-EoEEs —
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Figure 2: Overview of ICL. (a) An individual sequence level SSL for SR. (b) The proposed ICL for SR. It alternately performs in-
tent representation learning and intent contrastive SSL with FNM within the generalized EM framework to maximizes mutual

optimize 6 via InfoNCE loss:
information (MIM) between a behavior sequence and its corresponding intent prototype.
= W/RWY LU U
LseqcL = LseqcL (], hy) + Lseqer (hy, hy), (5)

and
exp(sim(hY, hY))

—— ; (6)
Zneg CXP(Slm(h'f, hneg))

Lseqc (WY, hY) = ~log

where sim(-) is dot product and ﬁneg are negative views’ represen-
tations of sequence S*. Figure 2 (a) illustrates how SeqCL works.
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Figure 2: Overview of ICL. (a) An individual sequence level SSL for SR. (b) The proposed ICL for SR. It alternately performs in-
which is however hard to optimize. Instead, we construct a lower- tent representation learning and intent contrastive SSL with FNM within the generalized EM framework to maximizes mutual
bound function of Eq (8) and maximize the lower-bound. Formally, information (MIM) between a behavior sequence and its corresponding intent prototype.
assume intent ¢ follows distribution Q(c), where ¢;j) =1 and . 5, N
Q(e) e Qlci) where the o stands for ‘proportional to’ (i.e. up to a multiplicative
constant). The inequality will hold with equality when Q(c;) =
LN = . - e
ey} = 0. Phersve hiave Pg(cils}'). For simplicity, we only focus on last positional step when

N T NT K optimize the lower-bound, which is defined as:
Z Z ln]E(c) [PQ(S?, C,‘)] = Z Z In Z Pg (S?, Ci)
u=1 t=1 u=1t=1 i=1 ) N K

P(st.ci) > 0(ei) - InPo(S*, i), (11)

N T K
=2, 2 ) Qe =5 u=1 i=1

where Q(cj) = Pg(ci|SY).

u=1 t=1 i=1 (10)
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+ Intent Representation Learning 2, 2,00 InPo(S",c0) ey
— Ul where Q(c;) = Pg(c;|SY).

K-means clustering over all sequence representations {h"} 1|,¢:1

to obtain K clusters. After that, we can define the distribution func- @)
i M-step: Intent Contrastive SSL with FNM
tion Q(c¢;) as follows:
- ¥ e — ™ 5 W
1 if S* in cluster i e @ @ JE @ 2lay Voms !
i) = Py (cilS™) = 12 HEE: :
Q(ei) o(ci|S") {O else. (&) iE2 = omm |
{ i b
We denote cj as the vector representation of intent ¢;, which is | DS s
. . 4 . ugmeﬂl(alioﬂs A S T ey |
the centroid representation of the i!”* cluster. In this paper, we use e =
vini-batcn Sequences

User Interest Representation: O Intent Prototype representation: ()

Encoder fy(+)

‘aggregation layer’ to denote the the mean pooling operation over all

position steps for simplicity. We leave other advanced aggregation

methods such as attention-based methods for future work studies. Figure 2: Overview of ICL. (a) An individual sequence level SSL for SR. (b) The proposed ICL for SR. It alternately performs in-
. . tent representation learning and intent contrastive SSL with FNM within the generalized EM framework to maximizes mutual

Flgure 2 (b) illustrates how the E-step works. information (MIM) between a behavior sequence and its corresponding intent prototype.

* Intent Contrastive SSL with FNM

User Intent Retrieval: ---» Positive pair: <— Negative pair: <->

where h* and ¢, are vector representations of S¥ and c;, respectively.
1 . . . . .

Py(S¥, ¢;) = Py(ci)Po(S*|ci) = — - Po(S|ci) B§s§d on Eq. (11), (1-2), (13), maximizing Eq. (11) is equivalent to
K minimize the following loss function:

1 exp(=(h* - c»)?)

K3k ep(=(hf - ¢))?) (13)
1 exp(h¥ - ¢;) _ Z log eXP(Sim(hu, Ci)) (14)

K Yy exp(h .¢j) — Zj;l exp(sim(h¥, cj)),
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where cneg are all the intents in the given batch. HOWCVCI', direCtIY Figure 2: Overview of ICL. (a) An individual sequence level SSL for SR. (b) The proposed ICL for SR. It alternately performs in-
tent representation learning and intent contrastive SSL with FNM within the generalized EM framework to maximizes mutual

Optlmlzlng Eq (16) can introduce false'negative Samples since users information (MIM) between a behavior sequence and its corresponding intent prototype.
in a batch can have same intent. To mitigate the effects of false-
negatives, we propose a simple strategy to mitigate the effects by

Multi-Task Learning

not contrasting against them:
exp(sim(fl”, Cu)) y L = Lextitem +A - LicL + ﬂ ’ -ESeqCLs (13)
1) where A and S control the strengths of the ICL task and sequence
level SSL tasks, respectively. Appendix A provides the pseudo-code

where ¥ is a se!: of users that have same intent as u in th-e mini-  of the entire learning pipeline. Specially, we build the learning par-
batch. We term this False-Negative Mitigation (FNM). Figure 2 adigm on Transformer [13, 40] encoder to form the model ICLRec.

(b) illustrates how the M-step works.

LicL(h¥ ¢y) = —log — ,
ZJ;;V:I ]logTeXP(Slm(hls Cy))
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Table 1: Performance comparisons of different methods. The best score is bolded in each row, and the second best is underlined.

The last two columns are the relative improvements compared with the best baseline results.

Dataset Metric | BPR | GRU4Rec Caser SASRec | DSSRec | BERT4Rec S°-Recisp  CL4SRec | ICLRec | Improv.
HR@5 0.0141 | 0.0162 0.0154 0.0206 | 0.0214 | 0.0217 0.0121  0.0217+0.0021 | 0.0283+0.0006 | 30.48%

Soopte HR@20 00323 | 00421 00399 00497 | 0.0495 | 00604 00344  0.0540+0.0024 | 0.0638:+0.0023 | 18.15%
POTS " NDCG@5 |0.0091| 0.0103 00114 00135 | 00142 | 0.0143 0.0084  0.0137+0.0013 | 0.0182+0.0001 | 33.33%
NDCG@20 | 0.0142 | 0.0186  0.0178 0.0216 | 0.0220 | 0.0251 0.0146  0.0227+0.0016 | 0.0284+0.0008 | 24.89%

HR@5 0.0212 | 0.0111  0.0251 0.0374 | 0.0410 | 0.0360 0.0189  0.0423+0.0031 | 0.0493+0.0013 | 16.43%

Bequty TR@20 00589 | 0.0478 00643 00901 | 0.0914 | 00984  0.0487  0.0994:0.0028 | 0.1076+0.0001 | 8.30%
Y NDCG@5 |0.0130| 0.0058 00145 00241 | 0.0261 | 0.0216 0.0115  0.0281+0.0018 | 0.0324+0.0017 | 15.51%
NDCG@20 | 0.0236 | 0.0104  0.0298 0.0387 | 0.0403 | 0.0391 0.0198  0.0441+0.0018 | 0.0489+0.0013 | 10.90%

HR@5 0.0120 | 0.0097 0.0166 0.0463 | 0.0502 | 0.0274 00143  0.0526+0.0034 | 0.0590+0.0012 | 12.07%

T HR@20 |0.0312| 0.0301 0.0420 0.0941 | 0.0975 | 0.0688 0.0235  0.1038+0.0041 | 0.1150+0.0016 | 10.74%
oY% NDCG@5 |0.0082| 00059 00107 00306 | 0.0337 | 00174 00123  0.0362:+0.0025 | 0.0403:0.0002 | 11.34%
NDCG@20 | 0.0136 | 0.0116  0.0179 0.0441 | 0.0471 | 0.0291 0.0162  0.0506+0.0025 | 0.0560+0.0004 | 10.57%

HR@5 0.0127 | 0.0152 0.0142 0.0160 | 0.0171 | 0.0196 0.0101  0.0229+0.0003 | 0.0257+0.0007 | 12.23%

- HR@20 | 0.0346 | 0.0371 0.0406 0.0443 | 0.0464 | 0.0564  0.0314  0.0630+0.0009 | 0.0677+0.0016 | 7.47%
P NDCG@5 |00082| 00091 0008 00101 | 0.0112 | 00121 0.0068  0.0144+0.0001 | 0.0162+0.0003 | 12.50%
NDCG@20 | 0.0143 | 0.0145  0.0156 0.0179 | 0.0193 | 0.0223 0.0127  0.0256+0.0003 | 0.0279+0.0006 | 8.98%
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Figure 5: Impact of intent class numbers K and the intent
contrastive learning strength A on Yelp.
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Table 2: Ablation study of ICLRec (NDCG@20).

Dataset
Model
e Sports Beauty  Toys Yelp
(A) ICLRec 0.0287 0.0480 0.0554 0.0283
(B) w/o FNM 0.0283  0.0465 0.0524  0.0266
(C) only ICL 0.0263  0.0429  0.0488  0.0267
(D) w/o ICL 0.0238  0.0428  0.0505 0.0258
(E), is (C) w/o seq. aug | 0.0242 0.0414 0.0488 0.0213
(F) SASRec 0.0216  0.0387  0.0441  0.0179
(G) ICL + S®-Recysp 0.0157 0.0264 0.0266 0.0205
(H) S*-Recjsp 0.0146  0.0198 0.0162  0.0127
0.065- s
~
o
o ©
©0.060+ 9
e = 0.0241
=
0.0551 —¥— CL4SRec —¥— CL4SRec
—¥— ICARec GEAT ~¥— ICARec
16 64 128 256 512 16 64 128 256 512
Batch Size Batch Size

Figure 6: Performance comparison w.r.t. Batch Size.
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